Forkhead box O1 promotes INS-1 cell apoptosis by reducing the expression of CD24
نویسندگان
چکیده
Type 2 diabetes seriously affects human health and burdens public health systems. Pancreatic β‑cell apoptosis contributes to a reduction in β‑cell mass, which is responsible for the occurrence of type 2 diabetes. However, the mechanism that underlies this effect remains unclear. In the present study, the role of forkhead box O1 (Foxo1) was investigated (which is a key regulatory factor in β‑cell function) in the apoptotic behavior of β‑cells and a potential underlying mechanism was determined. It was demonstrated that Foxo1 overexpression significantly reduced the proliferation of INS‑1 cells and increased the apoptosis of INS‑1 cells, in contrast to foxm1, foxp, foxa1, foxc and foxb1 overexpression. The present study aimed to investigate potential underlying mechanisms using bioinformatics, including Gene Set Enrichment Analysis, and biological experiments, including flow cytometry, cell counting kit‑8, immunofluorescence, western blotting, reverse transcription‑quantitative polymerase chain reaction analysis and lentiviral transfection. Further experiments conclusively showed that cluster of differentiation (CD)24 expression was significantly decreased when INS‑1 cells were treated with Foxo1. Animal experiments showed high CD24 expression in the pancreatic islets of diabetic Goto‑Kakizaki rats. Moreover, Gene Set Enrichment Analysis showed that CD24 expression was associated with the adaptive immune response of β‑cells. Finally, no significant differences in the proliferation and apoptosis of CD24 overexpressing INS‑1 cells were observed after Foxo1 treatment. These results suggested that Foxo1 overexpression in β‑cells was able to increase apoptosis by inhibiting CD24 expression. This study may provide an approach for the treatment and prevention of type 2 diabetes.
منابع مشابه
Anti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell
Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملSquamosamide Derivative FLZ Protects Pancreatic β-Cells from Glucotoxicity by Stimulating Akt-FOXO1 Pathway
Chronic hyperglycemia increases apoptosis and reduces glucose-stimulated insulin secretion. Although protective agents have been searched extensively, none has been found so far. Here we tested FLZ, a synthetic derivative of squamosamide from a Chinese herb, as a potential candidate for antiglucotoxicity in INS-1E cells and mouse islets. Chronic culture of β-cells in 30 mM glucose caused progre...
متن کاملGoserelin promotes the apoptosis of epithelial ovarian cancer cells by upregulating forkhead box O1 through the PI3K/AKT signaling pathway
Gonadotropins, including luteinizing hormone (LH) and follicle stimulating hormone (FSH), are conducive to the growth of ovarian cancer based on the 'gonadotropin theory' and are regulated by gonadotropin-releasing hormone (GnRH). The present study was carried out to investigate the effect of goserelin, a GnRH agonist, on the apoptosis of epithelial ovarian cancer (EOC) cells and the underlying...
متن کاملDownregulation of HMGB1 by miR-103a-3p Promotes Cell Proliferation, Alleviates Apoptosis and Inflammation in a Cell Model of Osteoarthritis
Background: MiR-103a-3p is a small non-coding RNA and has been reported to be involved in osteogenic proliferation and differentiation, but the role of miR-103a-3p in human osteoarthritis (OA) remains unclear. Objectives: In this study, we aimed to explore its function and molecular target in chondrocytes during OA pathogenesis. Materials an...
متن کامل